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Homework 5
Due: April 11, 2011

1. Inner bounds of DM-IC

For a discrete memoryless interference channel (DM-IC), the Han-Kobayashi (HK) achievable rate
region is the convex closure of the rate tuple satisfying

Ri1 < I(Wh; Y1|Up, Ua, Q)

Rip < I(Uy; Y1|W1, Us, Q)

Rao < I(Uz; Y1|U1, W1, Q)

Ry1 + Rio < I(Uy, Wi Y1|Us, Q)

Ry1 + Ry < I(Uz, W13 Y1|U1, Q)

R0 + Rao < I(Ur, Uz; Y1|W1,Q)

Ri1 + Rio + Roo < I(Ur, W1, Us; Y11Q)

and 7 similar inequalities for Rag, R2o, R1g for some (p(q)p(u1|q)p(wilq)p(uzl|q)p(walq)p(z1|u1, w1, q)
p(xa|ug, we,q)). (U1, Wi, Us, Wy) are auxiliary random variables serve to carry the messages (M1, M1,
Mg, Mas), respectively.

On the other hand, the Chong-Motani-Garg (CMG) achievable rate region is the convex closure of
the rate tuple satisfying

Ry <1

Riy+Rip<1I

Rii+ Ry <1

Ri1+ Rio+ Roo <

X1;11|UL, Ug, Q)
X1;Y1|Us, Q)
Uz, X1; Y1|U1, Q)
X1,U9;Y1|Q)

~ ~ —~

and 4 similar inequalities for Raa, Rag, R10 for some (p(q)p(u1,x1|q) p(uz, z2|q)).

Show the equivalence between these two representations of the achievable rate regions.

2. Gelfand-Pinsker theorem.

Gelfand-Pinsker theorem gives the capacity for the discrete memoryless channel (DMC) with discrete
memoryless state available noncausally at the encoder as

C= max I(U;Y)-1I(U,S))

p(uls),z(u,s)
Prove the converse of this theorem and explain why we can use a deterministic mapping z(u, s).

3. MMSE estimation via writing on dirty paper

Consider the additive noise channel with output (observation)
Y=X+5+Z7

where X is the transmitted signal and has mean p and variance P, S is the state and has zero mean
and variance @, and Z is the noise and has zero mean and variance N. Assume that X, S, and Z
are uncorrelated. The sender knows S and wishes to transmit a signal U, but instead he transmits
X such that U = X + S for some constant o
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(a) Find the mean squared error (MSE) of the linear MMSE estimate of U given Y in terms only
of u,, Q, P and N.

(b) Find the value of a that minimizes the MSE in part (a).
(¢) How does the minimum MSE you obtained in (b) compare to the MSE of the best linear MSE
estimate when there is no state at all, i.e., S = 07 Interpret the result.
4. AWGN Relay Channel

Figure 1 shows the AWGN-RC where g, g1, g2 > 0 are the channel gains, Z, Z; are iid ~ N(0,1), and
X and X; have the same power constraint P.

g1

(a) From the rate expressions for the discrete memoryless RC, derive the achievable rate of this Gaus-
sian channel for decode-forward and compress-forward coding schemes. For decode-forward,
show that joint Gaussian input is optimal.

(b) Using Matlab, plot the rates derived in part (a) versus P for the following cases:
Lg=g=192=3
ii.g=go=1,91=3
ill. g1 =¢g2=3,9=1
iv.gi1=¢9g2=1,9g=3
5. Compress-Forward Lower Bound
For the relay channel, the compress-forward lower bound is given as

C > max min (I(X, X1 Y) — I(Yi; Vi |X, X1, Y), [(X:Y, Y1|X1))
p(z)p(z1)p(J1ly1,21)

Starting from the error events given in El Gamal-Kim lecture notes page (17 — 43), derive this lower
bound using joint typicality lemma. Show all steps in your derivation.



