McGill University Electrical and Computer Engineering

Homework 1 Due: January 24, 2011

1. Here is a statement about pairwise independence and joint independence. Let X, Y_1 and Y_2 be binary random variables. If $I(X;Y_1) = 0$ and $I(X;Y_2) = 0$, does it follow that $I(X;Y_1,Y_2) = 0$?

(a) Yes or no?

(b) Prove or provide a counterexample.

(c) If $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$ in the above problem, does it follow that $I(Y_1; Y_2) = 0$? In other worlds, if Y_1 is independent of X, and of Y_2 is independent of X, is it true that Y_1 and Y_2 are independent?

2. Consider a sequence of n binary random variables X_1, X_2, \dots, X_n . Each *n*-sequence with an even number of 1's has probability $2^{-(n-1)}$ and each *n*-sequence with an odd number of 1's has probability 0. Find the mutual informations

$$I(X_1; X_2), I(X_2; X_3 | X_1), \dots, I(X_{n-1}; X_n | X_1, \dots, X_{n-2})$$

- 3. Let X, Y and Z be joint random variables.
 - (a) Prove the following inequality and find conditions for equality

$$I(X;Z|Y) \ge I(Z;Y|X) - I(Z;Y) + I(X;Z)$$

- (b) Give examples of X, Y and Z for the following inequalities
 - I(X; Y|Z) < I(X; Y)
 - I(X;Y|Z) > I(X;Y)
- 4. Csiszár's sum identity is given as follows.

$$\sum_{i=1}^{n} I(X_{i+1}^{n}; Y_i | Y^{i-1}) = \sum_{i=1}^{n} I(Y^{i-1}; X_i | X_{i+1}^{n})$$

where $X_{n+1}, Y_0 = \emptyset$. Prove this identity.

5. An *n*-dimensional rectangular box with sides X_1, X_2, \dots, X_n is to be constructed. The volume is $V_n = \prod_{i=1}^n X_i$. The edge-length l of an *n*-cube with the same volume as the random box is $l = V_n^{1/n}$. Let X_1, X_2, \dots be i.i.d. uniform random variables over the interval [0, a].

Find $\lim_{n\to\infty} V_n^{1/n}$, and compare to $(EV_n)^{1/n}$. Clearly the expected edge length does not capture the idea of the volume of the box.

- 6. Suppose that (X, Y, Z) are jointly Gaussian and that $X \to Y \to Z$ forms a Markov chain. Let X and Y have correlation coefficient ρ_1 and let Y and Z have correlation coefficient ρ_2 . Find I(X;Z).
- 7. Let $Y = X_1 + X_2$. Find the maximum entropy (over all distributions on X_1 and X_2) of Y under the constraint $E[X_1^2] = P_1$, $E[X_2^2] = P_2$.
 - (a) if X_1 and X_2 are independent.
 - (b) if X_1 and X_2 are allowed to be dependent.