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Lecture 3: Channel Capacity

1 Definitions

Channel capacity is a measure of maximum information per channel usage one can get through a
channel. This one of the fundamental concepts in information theory.

Definition 1 A Discrete channel, denoted by (X , p(y|x), Y), consists of two finite alphabet sets,
X and Y , and a conditional probability mass function p(y|x), where X is the input set, Y is
the output set, p(y|x) is the channel transition matrix.

For each input xi ∈ X to the channel, the output can be one of a number of posibilities {yj}, each
with probability p(yj|xi).

The channel is said to be memoryless if the current output is conditionally independent of
previous channel inputs and outputs, given the current input, i.e., it depends only on the current
input. That is

p(Yi|X
i, Y i−1) = p(Yi|Xi).

A discrete memoryless channel (DMC) is both discrete and memoryless.

Definition 2 An (M,n) code for a channel (X , p(y|x), Y) consists of

1. A message set {1, 2, . . . ,M},

2. An encoding function Xn : {1, 2, . . . ,M} → X which generates M codewords,
xn(1), xn(2), . . . , xn(M), and

3. A decoding function g : Y → {1, 2, . . . ,M}, g(Y n) = i.

The set of codewords is called the codebook C ={xn(1), xn(2), . . . , xn(M)}.

Definition 3 Probability of error There are three several definitions for the probability of error

Conditional probability of error: The conditional probability of error given that index i
was sent is defined as

λi = Pr{g(Y n) 6= i|Xn = Xn(i)}. (1)

Maximum probability of error: The maximum probability of error for an (M,n) is defined
as

λ(n) = max λi. (2)
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Average probability of error: The average probability of error e for an (M,n) code is
defined as

P (n)
e =

1

M

M∑

i=1

λi. (3)

Also, if W is chosen according to a uniform distribution over the set {1, 2, . . . ,M}, we can

define P
(n)
e = Pr{g(Y n) 6= W}.

Definition 4 The rate R of an (M,n) code is R = log2 M

n
bits per transmission.

Definition 5 A rate R is achievable if there exists a sequence of (2nR, n) codes such that the
maximal probability of error λ(n) → 0 as n → ∞.

Definition 6 The capacity of a channel is the supremum of all achievable rates.

2 Channel coding theorem

Theorem. The capacity of a DMC (X , p(y|x), Y) channel is given by

C = max
p(x)

I(X; Y ), (4)

where the maximum is taken over all possible input distributions.

By definition, codes with rate less than capacity R < C can yield arbitrarily small probability
of error for sufficiently large block lengths while for R > C the probability of error is bounded away
from 0. We will prove this theorem in the next section, but first lets look at some examples.

2.1 Examples

Example 1 Four letter noisy typewriter

We consider a four letter Noisy typewriter. In this case we have an input alphabet of 4 letters
(A, B, C, and D) and each letter is either printed out correctly or changed to the next letter with
probability 1

2
.

The capacity of this channel is

C = max I(X; Y )

= max
(
H(Y ) − H(Y |X)

)

= max H(Y ) − H(
1

2
)

= log |Y| − 1

= 1 bits.
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A simple code that achieves capacity for this channel is to use either {A,C} or {B,D} as input
letters so that no two letters can be confused. In each case, there are 2 codewords of block length
1. If we choose the codewords i.i.d. according to a uniform distribution on {A,C} or {B,D}, then
the output of the channel is also i.i.d. and uniformly distributed on {A,C,B,D}.

Example 2 Binary Symmetric Channel (BSC)

In A BSC, given any input sequence, every possible output sequence has some positive proba-
bility, so it will not be possible to distinguish even two codewords with zero probability of error.
Hence the zero-error capacity of the BSC is zero.

The capacity of this channel is

C = max I(X; Y )

= max
(
H(Y ) − H(Y |X)

)

= max H(Y ) − H(p)

= log |Y| − H(p)

= 1 − H(p) bits.

we can also model this channel as Y = X ⊕ Z where Z ∼ Bernoulli(p).

Example 3 Binary Erasure Channel (BEC)

The binary erasure channel (BEC ) is the analog of BSC in which some bits are lost rather than
being corrupted. The binary erasure channel is

C = max I(X; Y )

= max
(
H(X) − H(X|Y

)

= max H(X) − α

= log |X | − α

= 1 − α bits.

2.2 Properties of the Capacity

1. C ≥ 0 since I(X; Y ) ≥ 0.

2. I(X; Y ) ≤ log |X | since C = max I(X; Y ) ≤ max H(X) = log |X |.

3. Similarly I(X; Y ) ≤ log |Y|.

4. I(X; Y ) is a continuous function of p(x).

5. I(X; Y ) is a concave function of p(x).

Since I(X; Y ) is a concave function, a local maximum is a global maximum. This maximum
can then be found by standard convex optimization techniques.
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3 Proof of the channel coding theorem

To prove the capacity, we have to prove its achievability and converse. Achievability means that
for a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for every
rate R < C, there exits a sequence of (2nR, n) codes with maximum probability of error λ(n) → 0
as n → ∞. Converse means that any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤ C.

The proof uses the idea of random coding and joint typicality. Typicality and joint typicality
will be explained in the next section.

3.1 Achievability

Code Construction

Fix input distribution p(x) , generate a random code Xn(ω) such that each code word Xi(ω) with
p(xi) i.i.d. Xn(ω) = (X1(ω), X2(ω), · · · , Xn(ω)). We exhibit the (2nR, n) codewords as the matrix:

code bookC =




Xn(1)
Xn(2)

. . .
Xn(2nR)


 =




X1(1) X2(1) . . . Xn(1)
X1(2) X2(2) . . . Xn(2)

...
...

. . .
...

X1(2
nR) X2(2

nR) . . . Xn(2nR)




Thus the probability of generating this codebook:

Pr(C) =
2nR∏

ω=1

n∏

i=1

p(xi(ω))

This codebook is revealed to boh sender and receiver:

Encoding

To send message ω, the transmitter sends codeword Xn(ω) over n channel uses.

Decoding

Using jointly typically decoding, the decoder searches the codebook and find

(Xn(i), Y n) ∈ An
ǫ .

If exactly one (Xn(i), Y n) ∈ An
ǫ → ω̂ = i. Otherwise if either

(1) no codeword is jointly typical with Y n or

(2) more than 1 codeword is jointly typical with Y n

then set ω̂ = 0. Decoder error if ω̂ 6= ω.
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Error analysis

Define event that the ith codeword and Y n are jointly typical

Ei = (Xn(i), Y n) ∈ An
ǫ , i ∈ 1, 2, . . . , 2nR

Suppose that message W is uniform distributed. Then by the symmetry of the code construction,
the average probability of error averaged over all codes does not depend on the particular index
that was sent. Thus we can assume, the message W = 1, the error occurs if either Ec

1 occurs or
E2 ∪ E3 ∪ · · · ∪ E2nR occurs. Probability of error is

P n
e = Pr(Ŵ 6= 1) = Pr(Ec

1 ∪ E2 ∪ E3 ∪ · · · ∪ E2nR ≤ P (Ec
1) +

2nR∑

k=2

Pr(Ek)

Now, by the joint AEP, when n → ∞,

Pr((Xn, Y n) ∈ An
ǫ ) ≥ 1 − ǫ

Pr((Xn, Y n) /∈ An
ǫ ) ≤ ǫ

What we didn’t send happens to be jointly typical with received Y n with probability ≤ 2−n(I(X;Y )−3ǫ).

P n
e ≤ P (Ec

1) +
2nR∑

k=2

Pr(Ek)

≤ ǫ +
2nR∑

k=2

2−n(I(X;Y )−3ǫ)

= ǫ + (2nR − 1)2−n(I(X;Y )−3ǫ)

≤ ǫ + 2−n((I(X;Y )−R+3ǫ))

Thus if n is sufficient large and R ≤ I(X; Y ), then P n
e → 0 for any p(x). Because of uniform

distribion, here the average error probability is the same as maximum error probability.
Choose p(x) to maxmize I(X; Y ) we get channel capacity C, thus R ≤ C is achievable.

Question: So far we examine the evarage error probablity with W uniform. For general case with
any distribution of W , what about the maximum error probabilty when satisfying R ≤ C?

First examine error probability averaged over all the codebooks and all the codewords in each
codebook. Because of the symmetry over all codebooks and codewords, this average error probability
is the same as the probability of sending W = 1 as analyzed above.

Pe =
∑

Pr(codebook)
1

M

M∑

i=1

λi(codeword)

=
∑

Pr(codebook)P n
e (codeword)

= Pr(error|W = 1) ≤ ǫ
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Then

Pe ≤ ǫ ⇒ ∃Pe(one good codebook) ≤ ǫ.

Since the average error probabilty is less than ǫ, at least half of the codewords must have a
maximal probability of error less than 2ǫ. Throwing out half the codewords has changed the rate
from R to R − 1

n
, which is negligible for large n.

Thus for codebooks generated randomly with average error probability almost zero, there is at
least one good codebook with maximum error probability almost zero.

3.2 Converse

We want to show if (2nR, n) is achievable (λ(n) → 0), then R ≤ C.

3.2.1 For zero error probability

We will first prove that P n
e = 0 implies that R ≤ C. λ(n) = 0, Y n → W (message), which

means when Y is received, we know exactly what is sent. Thus H(W |Y n) = 0. Assume W ∈{
1, 2, · · · , 2nR

}
with uniform probability distribution.

H(W ) = H(W ) − H(W |Y n)

= I(W ; Y n)

≤ I(Xn; Y n)

= H(Y n) − H(Y n|Xn)

= H(Y n) −
∑

H(Yi|X
n, Y i−1)

= H(Y n) −
∑

H(Yi|Xi)

≤
∑

H(Yi) −
∑

H(Yi|Xi)

=
∑

I(Xi, Yi) ≤ nC

Where (15) → (16) comes from the data processing inequality; (18) → (19) comes from the as-
sumption of memoryless channel without feedback; (19) → (20) comes from H(Yi|Y

i−1) ≤ H(Yi).

3.2.2 For vanishing (but non-zero) errror probability

Continue to prove for the case of vanishing (but non-zero) error.

Fano’s inequality: If X → Y → X̂ forms a Markov chain then

H(X|X̂) ≤ H(Pe) + Pe log |X| (5)

where Pe = Pr(X̂ 6= X) is the probability of error for the estimator X̂.
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Proof. Define error event:

E =

{
1, x̂ 6= x

0, x̂ = x

We have:

H(X,E|X̂) = H(X|X̂) + H(E|X, X̂) = H(E|X̂) + H(X|X̂, E)

H(E|X, X̂) would be zero since we know both input and output.

Since Pe = Pr(X̂ 6= X) = Pr(E = 1), we can get

H(E|X̂) ≤ H(E) = H(Pe)

H(X|X̂, E) = Pr(E = 0)H(X|X̂, E = 0) + Pr(E = 1)H(X|X̂, E = 1)

Since H(X|X̂, E = 0) = 0,we have:

H(X|X̂, E) ≤ H(X) ≤ log |X|

Putting all together
H(X|X̂) ≤ H(Pe) + Pe log |X|

From the Data Processing Inequality, we have:

I(X; X̂) ≤ I(X; Y )

⇒H(X|Y ) ≤ H(X|X̂)

⇒H(X|Y ) ≤ H(Pe) + Pe log |X| ≤ 1 + Pe log |x|

where the last inequality comes from Pe = Pr(X̂ 6= X) = Pr(E = 1) and E is a binary random
variable.

Converse to the channel coding theorem

Apply the above inequality to channel coding: W → X → Y → Ŵ where X is a codeword in a
(2nR, n) code, and set Pe = Pr(Ŵ 6= W ); we have:

H(W |Ŵ ) ≤ 1 + Pe log |W | = 1 + Pe · nR

where W ∼ Uniform{1, 2, . . . , 2nR}, and we obtain

nR = H(W ) = H(W |Ŵ ) + I(W ; Ŵ )

≤ 1 + Pe · nR + I(Xn; Y n)

≤ 1 + Pe · nR + nC

⇒ R ≤
1

n
+ Pe · R + C

If Pe → 0, then R ≤ C.
Note also Pe ≥ (1 − C

R
− 1

nR
), thus if R > C then Pe is bounded away from zero as n → ∞.
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4 Typicality and Joint Typicality

The Asymptotic Equipartition Property (AEP) in information theory is the analog of the Law of
Large Numbers in probability theory. Assume that the binary random variable X has a probability
mass function defined by p(1) = 2/3, and p(0) = 1/3, where X1,X2,...,Xn are i.i.d. random variables
according to p(x), and we want to observe a realization of the sequence X1,X2,...,Xn, where n −→ ∞.
We will see that as n increases, the number of zeroes and ones in the sequence would be very close
to n/3, and 2n/3, respectively.

4.1 Typical Sets

We want to answer the following question: if X1,X2...,Xn are i.i.d. random variables according to
p(x), what is the probability of a sequence (x1, x2..., xn) to occur as n goes to infinity? This will lead
us to divide the set of the sequences χn into two sets, the typical set, which contains the sequences
which are very likely to occur, and the non-typical set which contains all the other sequences.

4.1.1 Theorem (AEP)

Theorem Let X1,X2,..., be i.i.d. random variables according to p(x), then in probability

−
1

n
log p(X1, X2, ..., Xn) −→ H(X)

Proof Based on the weak law of large number (WLLN), for i.i.d Zi,
1
n

∑n

i=1 Zi −→ E[Z] in proba-
bility. Specifically

Pr

[∣∣∣∣∣
1

n

n∑

i=1

Zi − E[Z]

∣∣∣∣∣ ≤ ǫ

]
−→ 1 ∀ǫ > 0, as n −→ ∞.

In other words, the average of realizations of i.i.d. random variables Xi converges in proba-
bility towards the Expected Value.

Then

−
1

n
log p(X1, X2, ..., Xn) = −

1

n

n∑

i=1

log(p(Xi)) −→ E[log(p(X))] = H(X).

Definition Typical set A
(n)
ǫ

The typical set A
(n)
ǫ with respect to p(x) is the set of sequences (x1, x2, ..., xn) ∈ χn with the

property
2−n(H(X)+ǫ) ≤ p(x1, x2, ..., xn) ≤ 2−n(H(X)−ǫ)

We denote the set A
(n)
ǫ as an ǫtypical set with respect to p(x), and we have,

A(n)
ǫ =

{
xn :

∣∣∣∣−
1

n
log p(xn) − H(X)

∣∣∣∣ ≤ ǫ

}
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4.1.2 Properties of A
(n)
ǫ

1. Probability of the typical set

Pr{A(n)
ǫ } −→ 1, as n −→ ∞

2. Number of sequences in the typical set

(1 − ǫ)2n(H(X)−ǫ) ≤ |A(n)
ǫ | ≤ 2n(H(X)+ǫ)

4.2 Jointly Typical Sets

In communication we have a channel input sequence Xn, and a channel output sequence Y n. We
decode Y n as the ith index if the codeword Xn(i) is jointly typical with the received signal Y n.
Here we define the idea of joint typicality.

Definition Jointly typical set

The set A
(n)
ǫ of jointly typical sequences {(xn, yn)} with respect to the distribution p(x, y) is

defined as

A(n)
ǫ = {(xn, yn) : 2−n(H(X)+ǫ) ≤ p(x1, x2, ..., xn) ≤ 2−n(H(X)−ǫ)

2−n(H(Y )+ǫ) ≤ p(y1, y2, ..., yn) ≤ 2−n(H(Y )−ǫ)

2−n(H(X,Y )+ǫ) ≤ p(xn, yn) ≤ 2−n(H(X,Y )−ǫ).}

where,

p(xn, yn) =
n∏

i=1

p(xi, yi).

4.2.1 Joint AEP theorem

Theorem Let (Xn, Y n) be i.i.d. sequences of length n according to p(xn, yn) =
∏n

i=1 p(xi, yi). Then

Pr{A(n)
ǫ } −→ 1, as n −→ ∞.

The size of the jointly typical set

|A(n)
ǫ | ≤ 2n(H(X,Y )+ǫ).

If (X̃n, Ỹ n) ∼ p(Xn)p(Y n), then

Pr((X̃n, Ỹ n) ∈ A(n)
ǫ ) ≤ 2−n(I(X;Y )−3ǫ).

Also for sufficiently large n,

Pr((X̃n, Ỹ n) ∈ A(n)
ǫ ) ≥ (1 − ǫ)2−n(I(X;Y )+3ǫ).
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Proof. The first two parts could be proved as for the AEP theorem. For the third part we have:

pr((X̃n, Ỹ n) ∈ An
ǫ ) =

∑

(xn,yn)∈A
(n)
ǫ

P (xn)P (yn)

≤ |A(n)
ǫ |2−n(H(X)−ǫ)2−n(H(Y )−ǫ)

≤ 2n(H(X,Y )+ǫ)2−n(H(X)−ǫ)2−n(H(Y )−ǫ)

= 2−n(I(X;Y )−3ǫ).

For sufficiently large n, Pr(A
(n)
ǫ ) ≥ 1 − ǫ, and therefore

1 − ǫ ≤
∑

(xn,yn)∈A
(n)
ǫ

P (xn)P (yn)

≤ |A(n)
ǫ |2−n(H(X,Y )−ǫ)

and
|A(n)

ǫ | ≥ (1 − ǫ)2n(H(X,Y )−ǫ).

By similar arguments to the upper bound above, we can also show that for n sufficiently large,

pr((X̃n, Ỹ n) ∈ An
ǫ ) =

∑

(xn,yn)∈A
(n)
ǫ

P (xn)P (yn)

≥ (1 − ǫ)2n(H(X,Y )−ǫ)2−n(H(X)+ǫ)2−n(H(Y )+ǫ)

= (1 − ǫ)2−n(I(X;Y )+3ǫ).

4.2.2 Intuition for Joint Typicality

We know from the joint AEP theorem, that there are only about 2nH(X,Y ) jointly typical sequences,
whereas, there are about 2nH(X) typical X sequences and about 2nH(Y ) typical Y sequences. This
shows that not all pairs of typical Xn and typical Y n are also jointly typical. This is because of the
fact that H(X,Y ) ≤ H(X) + H(Y ).

Now assume that a specific Xn is given. For this Xn we can search through all the 2nH(Y ) typical
Y sequences to find those which are jointly typical with Xn. For this sequence Xn, there are about
2nH(Y |X) conditionally typical Y sequences.The probability that some randomly chosen signal Y n

is jointly typical with Xn is about 2nH(Y |X)

2nH(Y ) = 2−nI(X;Y ). This suggests that we can search about

2nI(X;Y ) typical Y sequences in order to find one which is jointly typical with Xn.
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